
Noname manuscript No.
(will be inserted by the editor)

Design issues in Time Series dataset balancing
algorithms

Enrique de la Cal · José R. Villar ·
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Abstract Nowadays, the Internet of Things and the e-Health are producing
huge collections of Time Series that are analyzed in order to classify current
status or to detect certain events, among others. In two class problems, when
the positive events to detect are infrequent, the gathered data lacks balance.
Even in unsupervised learning, this imbalance causes models to decrease their
generalization capability. In order to solve such problem, Time Series balancing
algorithms have been proposed.

Time Series balancing algorithms have barely been studied; the different
approaches make use of either a single bag of Time Series extracting some of
them in order to generate a synthetic new one or ghost points in the distance
space. These solutions are suitable when there is one only data source and
they are univariate datasets. However, in the context of the Internet of Things,
where multiple data sources are available, these approaches may not perform
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coherently. Besides, up to our knowledge there is not multiple datasources and
multivariate TS balancing algorithms in the literature.

In this research, we study two main concerns that should be considered
when designing balancing Time Series algorithms: on the one hand, the TS
balancing algorithms should deal with multiple multivariate data sources; on
the other hand, the balancing algorithms should be shape-preserving. A new
algorithm is proposed for balancing multivariate Time Series datasets, as part
of our work.

A complete evaluation of the algorithm is performed dealing with two real
world multivariate Time Series datasets coming from the e-Health domain: one
about epilepsy crisis identification and the other on fall detection. A thorough
analysis of the performance is discussed, showing the advantages of considering
the Time Series issues within the balancing algorithm.

Keywords Imbalanced Time Series · Correlation measures · Human Activity
Recognition · Epilepsy Onset Recognition · Fall Detection

1 Introduction

The Internet of Things, e-Health, Bio-informatics and Bio-medicine are exam-
ples of how the technology is changing current problems or introducing new
ones in machine learning: from static and high-cost data sets to big data prob-
lems [18]. In many cases, these datasets include Time Series (TS); for instance,
the problems of human activity recognition and the human abnormal move-
ment detection include this type of data [5,27,29,32]. Moreover, nowadays TS
problems include not only one time sequence but several, so it is possible to
have missed atomic features, each of them being a TS. And not to mention
the possibility of mixing atomic features and TS with different sampling rates.

Nevertheless, gathering balanced TS datasets is not always feasible in sev-
eral contexts, for instance, in Bio-medicine. To illustrate this assertion just
consider the problem of seizure detection [33, 34], where the occurrence of a
seizure in every-day life must be detected. Depending on the severity of the
illness, the seizures can occur even once a month or less. Even in the case
of unsupervised learning, the generalization capabilities of the models are in
compromised due to the imbalance in the dataset.

The main part of the literature concerning the dataset balancing prob-
lem is focused on classical datasets, where a sample includes several features
and each feature contains a single value not a sequence like in a TS. These
techniques can rely on oversampling the minority classes or undersampling
the majority classes; it depends on the kind of problem, but both techniques
have their own advantages as well as drawbacks [12]. Furthermore, some other
valid approaches have been reported including developing algorithms dealing
with imbalance problems [11,22,23] or introducing ensembles for the minority
classes together with a sort of majority classes undersampling [17].

Examples of oversampling techniques include well-known algorithms as
SMOTE (Synthetic Minority Over-sampling Technique, [3, 13]), ADASYN
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(ADAptive SYNthetic Sampling, [19]), ADOMS (Adjusting the Direction Of
the synthetic Minority clasS examples, [31]) or SPIDER (Selective Preprocess-
ing of Imbalanced Data, [28]).

Unfortunately, TS datasets have not received much attention from the
research community as the dataset balancing problem has barely been studied.
The most similar approaches are focused on having a dataset consisting of
just one single univariate TS, where a single variable is available as a time
sequence, each value in the sequence is labelled with a class. The problem is
addressed as how to classify the values in the incoming sequence [16, 24–26],
where the known data sequence labels are clearly biased towards the majority
class. Therefore, the solutions rely on drawing new synthetic atomic values
based on any of the above mentioned algorithms.

In [21], the problem of balancing a TS dataset, that is, each sample in
the considered dataset is a univariate TS, is faced. In this approach, instead
of working on the original domain, ghost points (new synthetic points) are
suggested on the distance between TS domain. The matrix of distances (a
matrix containing the distance between each pair of TS using a certain TS
measure distance function) is then introduced in a SVM classifier, producing
an improved model. Different TS distance measurements were proposed, one
of the most popular is Dynamic Time Warping.

In our previous work [9] a simple adaptation of the SMOTE algorithm
for multivariate TS balancing (TS SMOTE) was presented. The current study
addresses some design issues for TS dataset balancing algorithms extending
our previous work: i) introducing the Dynamic Time Wrapping TS distance
measurement in the TS merging mechanism, ii) and a more detailed explana-
tion of the TS SMOTE new algorithm including a more formal definition of
the multivariate TS balancing problem iii) a complete description of the our
proposal for the generation of new synthetic TSs, and finally iv) the exper-
imentation section has been improved, with extra statistical analysis as well
as new experimentation comprising three state-of-art classifiers comparing the
performance of the model taking as input the original and the balanced TS
datasets as input.

The study is structured as follows. The next section outlines the SMOTE,
while the design issues are explained and possible solutions are given in Sect.
3. Experimentation and the discussion on the results are covered in Sect. 4.
Finally, the main conclusions are drawn in section 5.

2 The SMOTE algorithm

The SMOTE algorithm is an oversampling method [13], where each sample
from the minority class is randomly combined with each of its nearest neighbors
to balance the dataset.This method assumes a two-class problem. However, it
can be easily extended to a multi-class problem [30].

Algorithm 1 reproduces the algorithm from the original paper for the sake
of completeness. The parameters of this method include the number of nearest
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neighbors to consider (k, by default k = 5 has been proposed), the number
of samples belonging to the minority class (T ) and the number of synthetic
samples to generate for each original sample from the minority class (N). This
parameter N is given as a percentage; values smaller than 100% reduce the
original minority subset and produces a new dataset of the same size as the
original. Whenever N > 100 means that N/100 synthetic samples are to be
generated for each sample from the minority class.

SMOTE takes a sample and searches for k neighbors, considered as the
parents, using the Euclidean distance; each synthetic sample is generated as a
random linear combination of the parents. This method has been successfully
tested on different domains; and many different versions have been published
[3]. Some improvements on the SMOTE include i) cleaning the new dataset
of minority-class’ Tomek links producing the SMOTE+Tomek links and ii)
cleaning the whole dataset of Tomek links, known as SMOTE-ENN. A Tomek
link is a sample from one class that is included in the counterpart class space1.
Formally speaking, a pair of samples Ei and Ej forms a Tomek link if there
exists no sample Ek such that d(Ei, Ek) < d(Ei, Ej) or d(Ej , Ek) < d(Ei, Ej),
with d being the distance function. However, these methods are a sort of de-
noising stage, and we will not consider these versions.

Algorithm 1 The SMOTE algorithm. Three parameters are needed: Number of
minority class samples T, the amount of SMOTE N% and the number of near-
est neighbors k. The outcome includes (N/100) * T synthetic minority class samples.
SMOTE(T, N, k)

1: if N < 100 then
2: Randomize the T minority class samples
3: T = (N / 100) * T
4: N = 100
5: end if
6: N = int( N / 100 )
7: numattrs = Number of attributes
8: Sample[][]: array for original minority class samples
9: newindex: counts the number of generated synthetic samples

10: Synthetic[][]= array for synthetic samples
11: for i = 1 : T do
12: Compute the k nearest neighbors for i, saving the indexes in nnarray
13: Populate(N, i, nnarray)
14: end for
15: function Populate(N, i, nnarray)
16: while N 6= 0 do
17: Choose a random number nn in {1, ..., k}
18: for attr = 1 : numattrs do
19: dif = Sample[nnarray[nn]][attr]-Sample[i][attr]
20: gap = random number in {0, 1}
21: Synthetic[newindex][attr] = Sample[i][attr] + gap * dif
22: end for
23: newindex ++
24: N = N - 1
25: end while
26: end function

1 In medical record databases regarding a rare disease, were there is a large number of
patients who do not have that disease; continuous fault-monitoring tasks where non-faulty
examples heavily outnumber faulty examples, and others. The counterpart class is the one
corresponding to patients without the desease.
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3 TS dataset balancing algorithm’s design issues

The main drawback with the balancing algorithms in TS datasets is that
the proposed solutions have been analyzed when the samples include atomic
attributes. For instance, if we apply SMOTE to datasets where each sample
includes attributes that are TS, the new synthetic sample will introduce a
mere combination of the TS, as shown in Fig. 1, not to mention what to do
when the two TS have different length.

This section is devoted to explaining some issues to consider when designing
balancing algorithms in case of TS datasets. Firstly, the notation and the
definition of TS datasets is presented in the next subsection, introducing the
main issues to solve. Next, a solution based on SMOTE is detailed in subsection
3.2 solving these main issues.
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Fig. 1 A random combination of two TS -the two thinner gray lines- produce a totally
different TS -the thicker line-.

3.1 Issues in balancing TS datasets

3.1.1 Motivation

In the context of balancing algorithms, a dataset can be denoted as {xi},
where xi is called a sample. Each sample includes values for each of the M
attributes; therefore xi = {xi1, . . . , xiM}, and xij ∈ < ∀j ∈ {1, . . . ,M}. This
is the type of dataset considered for the SMOTE algorithm [13].

When univariate TS datasets are considered [21], then some modifications
are needed in the definition of a TS dataset: M is set to 1, and each sample is a
TS per se. Therefore, the dataset is still {tsi}, but each sample tsi is an univari-
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ate TS: tsit = {tsit1 , . . . , tsit, . . . , tsitTi
, }, t is the timestamp ∈ {t1, . . . , tTi}

and Ti is the number of values in this sequence i.

These datasets representation do not cope with what is currently encoun-
tered in some research fields. As mentioned earlier, TS datasets, where each
sample is a multi-variable TS are present nowadays in many Bio-medicine
problems [4]. Therefore, for these cases, a new definition of a TS dataset is
needed solving some specific issues that need representation.

The first issue to consider is the availability of multiples sources. For in-
stance, TS gathered from wearable sensors present variability due to the sensor
different behavior and the participants specific and unique way of moving or
specific signals, etc. While the bias due to the sensors are bounded by the
technical specifications, the differences due to the participants characteristics
are rather more complex.

Therefore, grouping the TS according to the participant is required. In
order to generate a new synthetic TS sample, only data from the same par-
ticipant must be considered to avoid mixing different behaviors. To make this
concept clear, refer to Fig. 1. Let us suppose that the gray lines may represent
a biometric signal from two participants; each one with his/her own frequency
and bias. Clearly, mixing these two TS leads to a undesirable result as the
outcome does not reflect the expected behavior.

The second issue to consider is that when balancing a dataset by means of
oversampling, the new synthetic samples must be shape preserving -see Fig.
2. The point is that merging two TS needs a method that must preserve the
shape of each of the merged TS with its own differences. In the mentioned
figure, the TS d) keeps the same shape as the input TSs, a wider alarm set
interval that starts and ends in two plausible timestamps.

These two issues are tackled in the next subsection, proposing extensions
on the SMOTE algorithm to cope with both of them. But first, a new and
complete definition of a TS dataset is provided.

3.1.2 Formal definition of a TS dataset

Let S be the number of data sources, then the dataset is {TSs}, ∀s ∈ [1, S].
We call a source of data each of the possible wells where data can be extracted.
In the examples given before, where data is gathered from each participant,
each participant acts as a different data source.

Each TSs is a TS dataset sharing the same data source: TSs = {tssi} ∀i ∈
[1, |TSs|], with |TSs| being the number of TS gathered from data source s. The
i-th multivariate TS sample from source s is denoted as ts

s
i= {ts

s
i,1, . . . , ts

s
i,j , . . . , ts

s
i,M};

while ts
s
i,j= {tssij,t1 , ts

s
ij,t2

, . . . , tssij,tTs
i

} refers to the feature j for the i-th

TS sample from source s: here j indexes the input feature or attribute, j ∈
[1, . . . ,M ], M is the total number of input features, tssij,t is the value at times-

tamp t in ts
s
i , while T si is the number of values in this sequence and the same

for each feature.



Design issues in Time Series dataset balancing algorithms 7

!0,2

0

0,2

0,4

0,6

0,8

1

1,2

0 30 60 90 120 150 180 210 240 270 300

(a)

!0,2

0

0,2

0,4

0,6

0,8

1

1,2

0 30 60 90 120 150 180 210 240 270 300

(b)

!0,2

0

0,2

0,4

0,6

0,8

1

1,2

0 30 60 90 120 150 180 210 240 270 300

(c)

!0,2

0

0,2

0,4

0,6

0,8

1

1,2

0 30 60 90 120 150 180 210 240 270 300

(d)

Fig. 2 Example of shape preserving merging: a) and b) are the two input TSs to merge,
c) is a new synthetic TS obtained by merging the TSs a) and b) using the logical formula
MAX and d) is a new synthetic TS generated using a shape preserving method for the input
TSs.

Considering the label of a TS, we can regard two scenarios. The first one
is labeling a TS ts

s
i with a single atomic class csi that represents the class

of the whole TS (e.g. any kind of ADL like Walking, Running, or typical
positive classes like Epilepsy or Fall). The counterpart is that a TS ts

s
i is

labelled with T si timestamp labels C
s

i representing what timestamps of the
TS belongs to certain class (e.g. a TS regarding a epilepsy crisis has part of it
that corresponds to the crisis and the remaining to the pre and post stages).
In this study, we propose a feasible solution for both cases. The first case is
obvious as when in the generation of a synthetic TS sample for the minority
class we already have the label for this new sample. For the second case, we
will generate the Csi for the new TS sample as well. Then, a TS dataset {TSs}
has associated the suitable atomic label {cs} and the TS dataset {Cs}.

Besides, let mC and MC be the labels for the minority and majority classes
labeling the TS samples within the dataset, respectively. The number of TS
with label mC for source s is denoted as |mCs|, while the number of TS with
label MC for source s is denoted as |MCs|.

It must be specified that only a TS with atomic label {cs} = mC can be
labeled with different timestamp labels of {Cs}(mC for the part of TS that
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Attribute Formula Value
3DACC Sampling Frequency - 16Hz
Number of timestamps of a TS T si 30-70 secs
Number of Subjects S 6
Sliding Windows Size - 2 seconds.
Sliding Windows Shift - 1 second
Features M 3 (SMA2, AoM3, TbP4)
Atomic Labels mC or MC EPILEPSY, NO EPILEPSY
Number of TSs per Subject |TSs|) 10-15 (mC)/30-47(MC)

Table 1 Summary of the UNIOVI-Epilepsy problem attributes, considering the formulas
of our TS data definition

corresponds to the crisis and MC for the remaining part of the TS). See Figure
3.
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Fig. 3 Label a TS with the two kinds of labels: atomic label (this TS is a mC sample) and
timestamp labels (mC or MC)

3.1.3 An example

Lets illustrate our ideas by means of an example. In the problem of epilepsy
identification tackled in [34], six healthy people were enrolled to carry on
simulation of epilepsy onsets, label EPILEPSY , and some different activities of
daily living, label NON EPILEPSY (see table 1, attribute Atomic Label). The
six people wore an smartwatch with a 3DACC sensor, so each person represents
a source in the formalization of our problem (S=6). Three transformations
were calculated from the three componentes of the acceleration (see table 1,
attribute Features).

Thus regarding a sampling rate of 16Hz, a sliding window size of two sec-
onds and a window shift of one second, the length of the raw acceleration TSs
are reduced by 16 when features TSs are computed (see Figure 4). For example,
a RAW ACC TS of 1120 samples(70 seconds) is transformed in a multivariate
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TS of 70 samples (4.375 seconds). As a consequence, we transform the domain
of the acceleration TS to a different TS domain, with a multivariate TS of the
three features and the atomic label.

10####20####30####40###50##60###70

RAW$ACC$TS$
Accx,$Accy Accz (16$Hz)

Features TS
SMA,$TpB,$AoM

Sliding W.$size =$32$tics$ (2$secs.)

1$sec

EPILESY$TS$(mC)

NON$EPILEPSY$TS$(MC)

TSSMOTE

100#########200########300##########400########500###########600###########700##########800##########900########1000######### 1100########

TS$Length :$16

Fig. 4 Epilepsy identification problem

3.2 Generating synthetic artificial TS

In this proposal we still consider the two class problem {mC, MC}. So, Then,
the mC needs to be SMOTEd provided that we are dealing with a TS dataset
with different data sources. The proposal is described in Algorithm 2. The
first difference is that the new samples are generated without mixing the data
sources -which is introduced as a different generation per source s in line 1.

Then, two TSs are chosen from the population of TSs. The first one ts
s
i

is selected randomly from the s dataset. And a second one ts
s
k that must be

in the nearest neighbor considering the original SMOTE algorithm and using
the Euclidean distance function as neighborhood distance.

Thirdly, the generation of the new TS is performed, which represents the
main novelty of this paper. To do so, a random merging value -α is also chosen.
Merging these two TS can be done in the euclidean space -as in SMOTE, this
α is used for the weighted sum of the two TS- or can be done considering the
shape of the TS. After some experimentation we’ve found out that merging
the TS in the euclidean space might lead to unsuitable outcomes. Therefore,
we propose the use of shape factors in the merging of TS. The underlying idea
is to find corresponding points in the two TS, merging in the euclidean space
in the related intervals.

For each input feature we apply DTW [6, 8, 9] to obtain the sequence of
matching pairs, each pair is the corresponding timestamps from each of the



10 de la Cal, Villar et al.

Algorithm 2 The extension of the SMOTE algorithm for deal-
ing with TS datasets. Three parameters are needed: the minority class
to smote, the number of samples to generate, and the TS dataset.
TS SMOTE(mC, max iter, {TSs})
1: for s=1:S do
2: e← 0
3: knn distances← knn(ts

s
)

4: while e < max iter do
5: i← random[1 . . . |mCs|] points to ts

s
i

6: n k ← |MCs| / |mCs| − 1
7: j ← 0
8: while e < n iter and j < n k do
9: k ← random[1 . . . |knn distances(tssi )|] points to ts

s
k

10: α = random[−1.0..1.0]
11: new ts

s ← []
12: for j = 1 : N do
13: warp pairs← DTW (ts

s
i,j , ts

s
k,j)

14: for t = 1 : |warp pairs| do
15: (x, y)← TimePoint(warp pairst,i, warp pairsj,k, ts

s
i,j , ts

s
k,j , α)

16: new ts
s
,j,x ← y

17: end for
18: end for
19: warp pairs← DTW (C

s
i , C

s
k)

20: for t = 1 : |warp pairs| do

21: (x, y)← TimePoint(warp pairst,i, warp pairsj,k, C
s
i , C

s
k, α)

22: C
s
new,x ← y

23: end for
24: {TSs} ← {TSs} ∪ new ts

25: {Cs} ← {Cs} ∪ C
s
new

26: {cs} ← {cs} ∪mC
27: j ← j + 1
28: end while
29: e← e+ 1
30: end while
31: end for
32: function TimePoint(ti, tk, ts

s
i,j , ts

s
k,j ,α)

33: gpx← min(ti, tk) + (ti + tk)/2
34: d← |tssi,j,ti − ts

s
k,j,tk

|
35: m← min(ts

s
i,j,ti

, ts
s
k,j,tk

) + (ts
s
i,j,ti

+ ts
s
k,j,tk

)/2

36: gpy = m+ α× d return (gpx, gpy)
37: end function

two TS to merge. For each pair a new value is estimated as shown in func-
tion TimePoint. Once a TS is obtained for each feature, the class TS is also
computed and the TS dataset and the class data set are updated.

Figure 5 graphically explains how to compute each of the time points to
add to each TS. Figure 6 shows an example of synthetic new TS (solid line)
based on other two real TS belonging to two epilepsy seizures of the same
participant (dotted and dashed lines).

It is worth mentioning that special attention should be paid to the length
of the TS, as they should be coherent. In this study, we decide to limit the
length of each synthetic TS to the shortest one between the original pair of
TSs selected to generate it, but this is just a solution for the sake of simplicity.
However, this is an issue that requires further study.
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Fig. 5 Random time point proposal: DTW distance example (Left), Time Point calculation
proposal (Right).

Fig. 6 Example of Synthetic TS: the new synthetic TS (solid line) and the parents’ TSs
(dotted and dashed lines)

4 Experiments and results

This research has used two public multivariate TS datasets: one comes from
our own public UNIOVI-Epilepsy repository, with data from a real data set
obtained from the simulation of epileptic seizures [34], and the other one taken
from the fall detection UMAFALL repository published by the University of
Malaga, in [10].

As the way to process both datasets are quite different and at least for the
current contribution a general procedure for multivariate datasets is not ready,
a complete section with all the materials and experiments will be included to
cope with each dataset.

4.1 UNIOVI Epilepsy dataset

4.1.1 Materials

This TS dataset was gathered following a previously defined and very strict
protocol, defining a set of activities, namely, the simulation of the epileptic
convulsions and three activities: running, sawing and walking -either gesturing
while walking slowly or normal walking at different paces. A wearable triaxial
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accelerometer sensor (3DACM) included in a bracelet placed on the affected
wrist measured the participant movements. The protocol was expected to cover
the wide variety of scenarios: sawing and running are activities similar to the
epileptic seizure, while walking is rather different. The length of the walking
test is about three times the length of the others due to the chosen design.

The bracelets have wireless data sampling capabilities at a rate of 16 Hz,
the 3DACM have a range of 2× g. Up to 6 healthy participants, all of whom
remained anonymous, successfully completed this experiment, each running
10 trials of each activity. The ages of the participants ranged from 22 to 47,
with four participants of around 40 years old. One participant out of six was
female, and the eldest was left-handed. An identification number was given
to each Time Series (TS), including information fields on participant ID, the
number of trials, the activity, etc. The data were gathered and stored for
subsequent filtering and preprocessing, as described below. The complete data
set is publicly available at [34] provided the citation acknowledgements are
used.

Furthermore, the acceleration components have been transformed with the
functions depicted in Table 2: the Signal-Magnitude Area (SMA), the Amount
of Movement (AoM) and the Time Between Peaks (TBP). These transforma-
tions use the body acceleration, and were calculated on a sliding window of
size 32 samples (2 secons) and a shift of 16 samples (1 second). To extract the
body acceleration from the 3DACC values, a third-order elliptic Cauer digital
filter was proposed. This filter used a sliding window of 4 samples and 1 sample
shift; the parameters for obtaining these filters using the Matlab toolbox were
as follows: a filter order of 3, a passband ripple of 1 dB, a stop-band attenuation
of 80 dB and a normalized cutoff of 0.25. Each value within a TS in the trans-
formed space was labelled with the majority class within the sliding window
of size 32 samples and a shift of 16 samples but the windows corresponding to
the period of crisis that was labeled with the minority class label. At the same
time, each TS sample was labeled as belonging to the corresponding activity
-EPILEPSY, NO EPILEPSY- as a whole.

This TS dataset, consisting of TS samples of three TS each -SMA, AoM
and TBP- {TSs}, with the label for each activity {cs} and with the TS for
each timestamp label {Cs}, has been used in this experimentation. We denote
this TS dataset as ORIG, while the TS dataset after applying TS SMOTE is
denoted as SMT.

4.1.2 Experimental setup

The TS were manually segmented and labelled according to the procedure
proposed in [2]. Three variables are considered, one for each acceleration com-
ponent; therefore, the number of features is M = 3. The minority class mC is
EPILEPSY, while the majority class is NO EPILEPSY. There are 6 subjects,
S = 6; the current ratio of imbalance is three non-epileptic activities per each
epileptic activity. However, this ratio is really worse if we consider the length
of the TS.
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Transformation Calculation

SMAt(s)
1
w

∑w−1
i=1 (

∑
c∈{x,y,z} |bc,t−1|)

AoMt(s)
∑i=w−1

i=0

∑
c∈{x,y,z} |max(bc,t−i)

−min(bc,t−i)|
TBPt(s) Computed with the following algorithm:

1.- Find the sequences with value higher
than mean+K*std within the window
(K = 0.9)

2.- Keep the rising points from each of
these sequences

3.- Measure the mean time between them

Table 2 The transformations of the components of the acceleration, where bc,i stands for
the body acceleration.

To select the number of samples to introduce in the dataset we used the
following criteria. In an imbalanced dataset, for example for subject 1 in table
3, there exists R = 2.47 times more examples belonging to the MC class than
to the mC class for the s data source. So, to balance the number of samples
for both classes means injecting (R− 1)× |mCs| new TS samples.

Subject
1 2 3 4 5 6

Dataset Size R Size R Size R Size R Size R Size R
EPILEPSY 15

2.47
10

4.7
10

2.47
10

3.1
13

2.46
10

3.0
NO EPILEPSY 37 47 31 31 32 30
TS SMOTE 22 - 37 - 21 - 21 - 11 - 20 -

Table 3 Number of TSs for each subject from the UNIOVI-Epilepsy dataset. Dataset
column refers to the dataset: EPILEPSY and NO EPILEPSY (ADL) refer to the TSs from
the UNIOVI-Epilepsy dataset, and TS SMOTE refer to the new synthetic TSs computed
from the EPILEPSY original dataset after running the TS SMOTE algorithm, Size is the
number of TSs in the corresponding dataset and R stands for Imbalance Ratio.

Finally, the α parameter was allowed to drift in the interval [-1.0, 1.0]. Al-
though this is a rather wide interval, it was used to evaluate the robustness of
the algorithm when the generation of the synthetic TS samples generate dis-
perse samples. As stated in [3], this scenario highly penalizes the performance
of balancing dataset algorithms; therefore, the conclusions can be extracted
on adverse scenarios. Furthermore, to compare the correlation between the
datasets before and after applying TS SMOTE different measures of correla-
tion have been calculated between each feature and the class for each dataset.

The next experimentation focuses on: i) analyzing the correlation before
and after applying TS SMOTE, and ii) comparing the performance of well-
known classification algorithms (DT and KNN) when training with the original
and with the balanced TS datasets.

4.1.3 Correlation between each feature and the class

Analyzing the correlation between the features and the class with and with-
out the TS SMOTE, shows whether the relationships between the features
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and the class remain the same after the new synthetic TS samples have been
introduced. In order to assess the similarity between the distribution of the
original TS dataset and the balanced TS dataset, we made use of the Pearson
Correlation (ρX,Y , Eq. 1) and the Mutual Information (MI(X,Y ), Eq. 2);
where cov is the covariance, σX is the standard deviation of X, p(x) is the
probability of the event x and p(x, y) is the conditional probability of x given
y.

ρX,Y =
cov(X,Y )

σXσY
(1)

MI(X,Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x) p(y)

)
(2)

These measurements have been calculated between each feature and the
class, for both the ORIG and the SMT datasets. Aggregated results for the six
participants are shown in Table 4; only the boxplot obtained for the participant
number 1 is depicted in Fig. 7.

These results show that the TS SMOTE generates a TS dataset rather
similar to the original one in terms of the correlation between each feature
and the class.

Nevertheless, the Wilcoxon signed-rank test has been performed to test if
the Pearson and Mutual Information correlation values from the ORIG and
from the SMT datasets belong to the same distribution. Clearly, there is no
evidence against the null hypothesis of the two series belonging to the same
distribution of the cases studied. Only three out of the 36 Wilcoxon tests
ORIG-SMT (figures in bold face in tables 5 and 6) using Pearson as well as
Mutual Information reject the null hypothesis. Therefore, the behavior of the
TS SMOTE seems to be valid to calculate new samples in order to balance
the TS dataset and keeps the distribution of the original dataset.

Fig. 7 Boxplot of the correlation measurements for participant 1. The boxplot on the left
represents the ρX,Y results and the one on the right refers to the MI(X,Y ) results. For
both figures, each pair ORIGINAL-SMOTE corresponds to the following features from left
to right: SMA, TbP and AoM.
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ρX,Y

SMA TbP AoM
Subject ORIG SMT ORIG SMT ORIG SMT

1 0.97/0.01 0.95/0.01 0.95/0.02 0.95/0.02 0.82/0.05 0.83/0.03
2 0.97/0.01 0.97/0.01 0.94/0.03 0.95/0.02 0.83/0.03 0.86/0.03
3 0.96/0.02 0.96/0.01 0.92/0.04 0.93/0.03 0.73/0.06 0.76/0.06
4 0.98/0.00 0.98/0.01 0.96/0.01 0.96/0.02 0.81/0.07 0.76/0.05
5 0.96/0.01 0.95/0.01 0.94/0.02 0.94/0.01 0.78/0.11 0.74/0.09
6 0.97/0.01 0.96/0.01 0.97/0.02 0.98/0.01 0.82/0.03 0.83/0.02

MI(X,Y )
SMA TbP AoM

Subject ORIG SMT ORIG SMT ORIG SMT
1 0.99/0.02 0.99/0.01 0.99/0.02 0.99/0.01 0.40/0.13 0.39/0.09
2 0.98/0.01 0.98/0.02 0.92/0.04 0.92/0.03 0.20/0.09 0.24/0.08
3 0.98/0.04 0.98/0.02 0.94/0.06 0.95/0.04 0.23/0.07 0.20/0.06
4 0.99/0.00 0.99/0.01 0.96/0.04 0.96/0.03 0.35/0.18 0.26/0.14
5 0.97/0.03 0.98/0.03 0.95/0.05 0.97/0.04 0.12/0.06 0.12/0.04
6 0.99/0.01 0.99/0.01 0.97/0.05 0.97/0.04 0.66/0.08 0.69/0.07

Table 4 Correlation results between each feature and the class. The first column on the
left refers to the participant id, that is, the data source correlative identification. Each cell
contains the mean and the standard statistics for the values of the correlation measurements.

Participant SMA AoM TbP
1 0.0051 0.8004 0.8477
2 0.2893 0.5498 0.0523
3 0.4209 0.6597 0.1670
4 0.7498 0.3867 0.0112
5 0.0141 0.1761 0.1394
6 0.1841 0.6061 0.5423

Table 5 Wilcoxon signed-rank test P-values at a significance level of 0.05. The null hy-
pothesis is that the data obtained for the ρ(feature, class) calculated for the ORIG dataset
and for the SMT dataset belong to the same distribution.

Participant SMA AoM TbP
1 0.4883 0.3254 0.9275
2 0.9414 0.6823 0.1503
3 0.8077 0.9394 0.3701
4 0.2298 0.9394 0.1071
5 0.2184 0.2539 0.5391
6 0.4499 0.7304 0.1739

Table 6 Wilcoxon signed-rank test P-values at a significance level of 0.05. The null hypoth-
esis is that the data obtained for the MI(feature, class) calculated for the ORIG dataset
and for the SMT dataset belong to the same distribution.

4.1.4 Performance comparison

In order to compare the performance of TS SMOTE, we will reproduce the ex-
perimentation on the ORIG dataset performed in [34] with the SMT dataset.
The mentioned experimentation performed a 5x2 cross-validation on the par-
ticipants, learning several classifiers, the Decision Trees (DT) [7, 14] and K-
Nearest Neighbors (KNN) [15] among them -all of them from Matlab tool-
boxes. It’s very important to highlight that this experimentation will obtain
generalized models for the whole population of subjects, since the 5x2 cv tech-
nique is mixing TSs from the different subjects selected randomly in the same
folds. In this case, TS SMOTE will take place on the training fold before
learning the models, while the test subset remains the same. With this con-



16 de la Cal, Villar et al.

figuration we can train the DT and KNN with balanced dataset, while at the
same time the comparison can be done, as long as the test dataset is exactly
the same. For the KNN, three and five neighbors are considered. To compare
the performances, the same measurements are used: the Mean Absolute clas-
sification Error (MAE) and the Geometric Mean (GM). These measurements
are calculated according Eq. 3 and Eq. 4, respectively, where P, TSp, Nt, x̂i, xi
stand for the number of subjects, the number of Time series per subject p, the
number of samples for TS p, the expected value for sample i and the forecasted
value for sample i respectively; and TP, FN, TN and FP stand for the True
Positive, False Negative, True Negative and False Positive rates, respectively.

MAE =

P∑
p=1

TSp∑
t=1

Nt∑
i=1

abs(x̂i − xi)

P∑
p=1

TSp∑
t=1

Nt

. (3)

Sensitivity =
TP

TP + FN

Specifity =
TN

TN + FP

GM =
√
Sensitivity.Specifity

(4)

For this experimentation, only the test dataset results are included, not the
train dataset results, for the sake of brevity. Table 7 shows the obtained values
for GM and the MAE of each fold from the cross-validation. Figure 8 depicts
the box plots of the GM and MAE for the test dataset. It is worth mentioning
that the learning process is driven by the MAE. Although the results show
that the TS SMOTE does not improve the MAE results, the GM values are
much better for the TS SMOTE, suggesting that the robustness of the models
has been enhanced. The results obtained for the GM shows a good reduction
in the spread of the results after applying TS SMOTE.

Finally, the Wilcoxson ranked test has been calculated to compare the
results of the combination of different models, datasets and measurements
(see Table 8). In all the cases there is no evidence against the null hypothesis,
so we can not state statistically that TS SMOTE outperforms the Original
dataset results. Anyway, based on our experience, we can say that models
learnt from simulated datasets don’t usually work in real situations.

4.2 UMAFALL dataset

4.2.1 Materials

Usually the FD (Fall Detection) studies develop a dataset comprising simu-
lated falls and sessions of different ADL (Activities of Daily Living). All of
these TS are labeled and become the test bed for the corresponding study. In
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Performance Results: GM
KNN3 KNN5 DT

Fold ORIG SMT ORIG SMT ORIG SMT
1 0.9183 0.9324 0.9178 0.9345 0.9335 0.9405
2 0.9150 0.9236 0.9074 0.9193 0.9261 0.9417
3 0.9242 0.9322 0.9264 0.9308 0.9380 0.9388
4 0.7894 0.8176 0.7866 0.8097 0.7971 0.8753
5 0.9130 0.9202 0.9138 0.9255 0.9325 0.9436
6 0.8004 0.8619 0.7921 0.8546 0.8020 0.9063
7 0.8234 0.8386 0.8180 0.8368 0.8289 0.8685
8 0.8176 0.8488 0.8030 0.8433 0.8356 0.8625
9 0.8025 0.8170 0.8014 0.8139 0.8010 0.8593
10 0.8888 0.9024 0.8913 0.9086 0.8832 0.9181

Mean 0.8593 0.8795 0.8558 0.8777 0.8678 0.9055
Median 0.8561 0.8822 0.8546 0.8816 0.8594 0.9122
Dev 0.0569 0.0476 0.0598 0.0507 0.0609 0.0358

Performance Results: MAE
1 0.0518 0.0583 0.0503 0.0574 0.0552 0.0560
2 0.0415 0.0525 0.0399 0.0501 0.0440 0.0556
3 0.0560 0.0599 0.0543 0.0596 0.0419 0.0519
4 0.0459 0.0474 0.0441 0.0470 0.0524 0.0481
5 0.0486 0.0582 0.0480 0.0545 0.0449 0.0481
6 0.0406 0.0391 0.0397 0.0387 0.0423 0.0399
7 0.0391 0.0539 0.0374 0.0504 0.0448 0.0577
8 0.0480 0.0499 0.0468 0.0461 0.0544 0.0497
9 0.0412 0.0432 0.0396 0.0424 0.0478 0.0442
10 0.0456 0.0482 0.0428 0.0468 0.0453 0.0446

Mean 0.0459 0.0511 0.0443 0.0493 0.0473 0.0496
Median 0.0458 0.0512 0.0434 0.0486 0.0451 0.0489
Dev 0.0054 0.0068 0.0055 0.0065 0.0049 0.0058

Table 7 Cross validation test results using the GM measurement (GM) and Error mea-
surement (MAE)

Wilcox Results: GM Test
KNN3 KNN5 DT

ORIG SMT ORIG SMT ORIG SMT
ORIG 1.000 0.273 1.000 0.186 1.000 0.104
SMT 0.273 1.000 0.186 1.000 0.104 1.000

Wilcox Results: MAE Test
ORIG 1.000 0.089 1.000 0.121 1.000 0.308
SMT 0.089 1.000 0.121 1.000 0.308 1.000

Table 8 Wilcoxon signed-rank test P-values at a significance level of 0.05. The null hy-
pothesis is that the GM or MAE obtained for the different models, KNN3, KNN5 or DT,
taking the ORIG dataset as input, belongs to the same distribution as the corresponding
models obtained for the SMT dataset

this context, a simulated fall is performed by a set of healthy young partici-
pants wearing the sensory system, each of them letting him/herself fall towards
a mattress from a standing still position.

The vast majority of these datasets were gathered with the sensor attached
to the main body, either on the chest, waist, lumbar area, or tight. To our
knowledge, the UMAFall dataset is the only one that includes data gathered
from sensors placed on a wrist while performing simulated falls; this is the type
of data needed in this research as long as the main hypothesis of this study is to
perform FD with a sensor worn on a wrist. Furthermore, this dataset includes
several sensors placed on different parts of the body -a 3DACC on the waist
among others-. Finally, there is no pattern in the number of repetitions of each
activity or fall simulation. Some participants did not simulate any fall, some
performed 6 or 9 while a participant simulated 60 falls.
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Fig. 8 Boxplots for the GM (left) and MAE (right) on the test dataset.
NP NR NF Fqcy Description

17 - 208 20

Includes forward, backward and lateral falls (FALL),
running, hopping, walking and sitting (NO FALL).

Neither all the participants have every type of
activities nor the same number of goes.
Sensors on the wrist, waist, ankle, chest

and trouser pocket.
Accelerometer, Gyroscope and Magnetometer

Table 9 Columns NP, NF and NR stand for the number of participants, the number of
falls in the dataset and the number of goes for each ADL, respectively. A hyphen (-) means
that it is not a regular value. The sampling frequency used in gathering the dataset is stated
in Hz in column Fqcy.

Table 9 includes the basic information from this dataset where it can be
seen that UMAFALL comprise different sensors and locations for them. The
current study only uses the TS from the accelerometer located in the wrist
since the other dataset included previously (UNIOVI-Epilepsy) uses a sensor
in the same part of the body (the wrist). Besides this is the challenge in our
current research line related with Human Activity Recognition [20,33,34].

4.2.2 Experimental setup

For this experiment we have selected two participants to check the validity of
the TS SMOTE proposal as an alternative to the analysis of a complete TS
dataset (UNIOVI dataset) already presented.

In the latter, we tested whether it was possible to enhance the process of
obtaining generalized models using the TS from different participants; results
with and without TS SMOTE were compared. On the other hand, with the
new dataset we are not focused on generalized models but on specific models
for each participant. In this case, the question is to evaluate whether it could
be possible to apply TS SMOTE in problems with a very reduced number of
TS from one of the classes and still enhance the outcome as well. Furthermore,
to complete the experimentation, the data from both participants have been
merged, so an idea of the generalization capabilities for these two participants
also hold.
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The minority class mC is FALL, while the majority class is NO FALL. The
current ratio of imbalance (see formula 8) is 2.33 non-fall activities per each
fall activity for the subject 1, and 2.55 non-fall activities per each fall activity
for the subject 2.

D = [ts1, ts2, ..., tsn] (5)

MCdata = tsj ∈ D/tsj .class = NOFALL (6)

mCdata = tsk ∈ D/tsk.class = FALL (7)

R =
|MCdata|
|mCdata|

(8)

where D is the Dataset for one participant in UMAFall dataset, ts is a multi-
variate time series with four features: the three componentes of the acceleration
and the magnitude, MCdata and mCdata are the partitions of D belonging
to the majority and minority classes and R is the formula of the ratio of
imbalance.

To select the number of samples to introduce in the dataset we used the fol-
lowing criteria. In an imbalanced dataset, there exists R times more examples
belonging to the MC class than to the mC class for the subject. So, to balance
the number of samples for both classes means injecting (R−1)×|mCs| new TS
samples. Thus, considering a goal R of 1.0, the number of new TS SMOTEd5

can be seen in table 10.
Subject Dataset Size R

1
FALL 6

2.33
NO FALL 14

TS SMOTE 8

2
FALL 9

2.55
NO FALL 23

TS SMOTE 14

Table 10 Number of TSs for each subject from the UMAFall dataset. Dataset column
refers to the dataset: FALL and NO FALL (ADL) refer to the TSs from the UMAFall
original dataset, and TS SMOTE refer to the new synthetic TSs computed from the FALL
original dataset after running the TS SMOTE algorithm, Size is the number of TSs in the
corresponding dataset and R stands for Imbalance Ratio.

In this experiment, four variables are considered, one per each acceleration
component and the magnitude calculated on the three previous components;
therefore, the number of features is M = 4. The TS were manually segmented
and labelled according to the procedure proposed in the well-known Abbate
Algorithm [1] (see figure 9).

As in UNIOVI-Epilepsy the α parameter was used to drift in the interval
[-1.0, 1.0]. Although this is a rather wide interval, it was used to evaluate the
robustness of the algorithm when the generation of the synthetic TS samples
generate disperse samples. As stated in [3], this scenario highly penalizes the
performance of balancing dataset algorithms; therefore, the conclusions can be
extracted on adverse scenarios. In figure 10 we can be seen a new synthetic TS
(solid line) calculated from two original TSs using the TS SMOTE algorithm.

5 Remember that only the FALL TSs are TS SMOTEd
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Fig. 9 Fall Output using the Abbate algorithm: the dashed line is the magnitude of the
three components of the acceleration and the solid line is the Output of the Abbate algorithm
for the class (3=FALL, 0=NO FALL) calculated manually. The data was gathered from a
3DACC sensor on the waist. Plots show the magnitude of the acceleration’s evolution with
the time.

Fig. 10 Solid line: new Synthetic FALL TS Smote, Dashed line/Dotted Line: Original
parents FALL TSs. The data was gathered from a 3DACC sensor on the waist. Plots show
the magnitude of the acceleration’s evolution with the time.

Correlation between each feature and the class As in the previous dataset, we
have analyzed the correlation between the features and the class, with and
without the TS SMOTE. For this new problem we have used the Pearson
Correlation (ρX,Y , Eq. 1) coefficient and the Mutual Information (MI(X,Y ),
Eq. 2) as correlation measures too. Although the correlation results are not
relevant enough to obtain any kind of conclusion, we have included the table
11 with the same kind of calculus as in UNIOVI-Epilepsy. However, the most
relevant figures are the Wilcoxon test results that we have included in table
12. We have found that in this problem the new TS SMOTEd dataset keeps
the same distribution of the original dataset in all the cases.

Performance comparison This experimentation performed a train-test-validation
process of the NN model, considering the datasets from the table 10. Six differ-
ent experiments have been designed, grouped in three different scenarios (see
table 13): subject 1, subject 2 and subjects 1&2. Each scenario has two cases:
one using the TS SMOTE and another without the TS SMOTE dataset. The
cases are identified with a experiment ID number shown in table 13. Each case
splits the available dataset into two subdatasets: the Train-Test and the Vali-
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ACCX ACCY ACCY MAG
Subject ORIG SMOTE ORIG SMOTE ORIG SMOTE ORIG SMOTE

ρX,Y

1 -0.00/0.28 -0.06/0.24 -0.06/0.19 -0.06/0.19 -0.03/0.17 -0.03/0.17 0.04/0.19 0.04/0.19
2 -0.17/0.15 -0.20/0.14 0.31/0.20 0.31/0.20 -0.32/0.17 -0.32/0.17 0.24/0.14 0.24/0.14

MI(X,Y )
1 0.13/0.09 0.10/0.07 0.08/0.03 0.08/0.03 0.06/0.03 0.06/0.03 0.11/0.09 0.11/0.09
2 0.09/0.03 0.10/0.03 0.16/0.07 0.16/0.07 0.09/0.05 0.09/0.05 0.09/0.05 0.09/0.05

Table 11 Correlation results between each feature and the class. The first column on the
left refers to the participant id, that is, the data source correlative identification. Each cell
contains the mean and the standard statistics for ρX,Y and MI(feature, class) .

ACCX ACCY ACCY MAG
Subject Dataset ORIG SMOTE ORIG SMOTE ORIG SMOTE ORIG SMOTE

ρX,Y

1
ORIG 1.0000 0.5910 1.0000 0.8363 1.0000 0.5353 1.0000 0.0521

SMOTE 0.5910 1.0000 0.8363 1.0000 0.5353 1.0000 0.0521 1.0000

2
ORIG 1.0000 0.6596 1.0000 0.5156 1.0000 0.8503 1.0000 0.1365

SMOTE 0.6596 1.0000 0.5156 1.0000 0.8503 1.0000 0.1365 1.0000
MI(X,Y )

1
ORIG 1.0000 0.4821 1.0000 0.7097 1.0000 0.3414 1.0000 0.3418

SMOTE 0.4821 1.0000 0.7097 1.0000 0.3414 1.0000 0.3418 1.0000

2
ORIG 1.0000 0.5568 1.0000 0.3671 1.0000 0.7214 1.0000 0.3040

SMOTE 0.5568 1.0000 0.3671 1.0000 0.7214 1.0000 0.3040 1.0000

Table 12 Wilcoxon signed-rank test P-values at a significance level of 0.05. The null hy-
pothesis is that the data obtained for ρX,Y and MI(feature, class) calculated for the ORIG
dataset and for the SMOTEd dataset belong to the same distribution.

dation. The best parameter subset for the NN model has been obtained with
the Train subdataset using a 10-fold CV, while the final model is obtained
using the complete subdataset Train-Test through a 5x2CV for the NN best
parameters subset.
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Exp. Id. Subject Class R Size Train-Test Validation

1 1
FALL

2.33
6 50% 50%

NO FALL 14 50% 50%

2 1
FALL

1.00
6 50% 50%

NO FALL 14 50% 50%
FALL TS SMOTE 8 100% 0%

3 2
FALL

2.55
9 50% 50%

NO FALL 23 50% 50%

4 2
FALL

1.00
9 50% 50%

NO FALL 23 50% 50%
FALL TS SMOTE 14 100% 0%

5

1 FALL

2.46

6 50% 50%
1 NO FALL 14 50% 50%
2 FALL 9 50% 50%
2 NO FALL 23 50% 50%

6

1 FALL

1.00

6 50% 50%
1 NO FALL 14 50% 50%
1 FALL TS SMOTE 8 100% 0%
2 FALL 9 50% 50%
2 NO FALL 23 50% 50%
2 FALL TS SMOTE 14 100% 0%

Table 13 Experiments: Exp. Id. is the Identificator we have used for this experiment,
Subject is the id of the subjects considered, Class column refers to the kind of dataset:
FALL, NO FALL (ADL) or FALL TS SMOTE. R stands for Imbalance Ratio. Size is the
number of TSs that the dataset include. Train-Test represents the percentage of TSs that
have been used for the train-test process, and Validation the percentage of TSs used for
validation

The Abbate algorithm needs a machine learning model to learn the fall
detection event, and in this case we have used the classical model used in the
original algorithm, a feed forward NN [1]. And the other parameter for Abate
algorithm is the minimum threshold for the maximum peak during the fall. In
terms of Abbate this peak is called the Peak Time and the threshold is th1.

The best subset of parameters was obtained for different values of th1 and
the NN model using the grid search6. The obtained parameters are shown in
Table 14 for a feed forward NN and they are the same for the three thresholds
tested (2.50g, 3.00g and 3.10g), so 2.5g has been chosen as th1 for all the
experiments.

Threshold Size Decay Max. Iter. Abs. Tol. Rel. Tol.
2.50 20 100 0.001 1.0e-08 1.0e-06
3.00 20 100 0.001 1.0e-08 1.0e-06
3.10 20 100 0.001 1.0e-08 1.0e-06

Table 14 Best parameter set found for the feed forward NN and for different values of th1
for Experiment #1 (Subject 1 without TS SMOTE)

Table 15 shows the performance of the experiments defined in table 13,
comparing the two cases for the three scenarios. The comparison has been
computed using the following formula:

%∆ =
PerformaceTS SMOTE − PerformaceORIGINAL

PerformaceORIGINAL
(9)

6 R Caret package
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We can state that the models obtained from the balanced validation dataset
(Exp. Id. =#id TS SMOTE) outperforms most of the classification statistics
of the models obtained with the original dataset (Exp. Id. = #id Original)
in the three comparisons but for the subject 2. Specifically in the comparison
for subject 2 the TS SMOTE outperforms the Accuracy, the Kappa factor,
the Specificity and the Precision of the classifier obtained from the original
Dataset while the performance classification of positive events (Sensitivity)
and factor G worsens.

G =

√
TP

TP + FN
× TN

TN + FP
(10)

where TP, FN, FP stands for True Positives, False Negatives and False Posi-
tives respectively.

Subject Exp. Id ACC Kp Se Sp Pr G
1 #1 Original 0.8000 0.4118 0.3333 1.0000 1.0000 0.5774
1 #2 TS SMOTE 0.9000 0.7368 0.6667 1.0000 1.0000 0.8165

%∆ 12,50 78,92 100,03 0,00 0,00 41,41
2 #3 Original 0.7333 0.4118 0.7500 0.7273 0.500 0.7386
2 #4 TS SMOTE 0.8667 0.5946 0.5000 1.0000 1.0000 0.7071

%∆ 18.19 44,39 -33,33 37,49 100,00 -4,26
1&2 #5 Original 0.7200 0.1117 0.1429 0.9444 0.5000 0.3673
1&2 #6 TS SMOTE 0.8000 0.3655 0.2857 1.0000 1.0000 0.5345

%∆ 11,11 227.22 99.93 5,89 100,00 45,52

Table 15 Results obtained from the UMAFALL validation dataset for a threshold th1 of
2.5×g. The different columns are: the Exp. Id (is the id of the experiment and the descripcin
of the dataset, Original or TS SMOTE, that stands respectively for the Original Validation
dataset and the balanced dataset with the TS SMOTE algorithm), the threshold (th1), the
Accuracy (Acc), Kappa factor (Kp), Sensitivity (Se), Specificity (Sp), Precision (Pr), and
the geometric mean G computed using Eq. 10. The model is a feed forward NN.

5 Conclusions

This study focuses on the design issues that need addressing when designing a
balancing algorithm for TS datasets; since this issue has barely been studied,
it’s a novelty in the literature. This problem is now faced in emerging real world
problems in IoT and Biomedicine. An extension of the well-known balancing
method SMOTE is proposed, including an stage where the shape of the TS
parents merged is kept. To do so, DTW is used to determine the changes in the
shape, and the corresponding intervals from each parent are then interpolated
as in the original SMOTE.

Two datasets concerning two different problems have been tackled: one
about epilepsy crisis identification and the other on fall detection. In the for-
mer, we have chosen the complete dataset producing a generalized model valid
for different subjects, and for the latter, two similar participants were selected
to obtain a very specific model for each one.

For both problems, a correlation study was carried out and the results
showed that the correlations among each feature and the class are kept con-
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stant after balancing the original datasets, so the statistical distribution of the
datasets balanced with TS SMOTE is the same as the imbalanced dataset.

As regards the classification results for the epilepsy problem, the results
show that the robustness of the obtained classifiers is much better using the
TS SMOTE, although the MAE results were clearly not better or were even
worse. As the TSs in this problem has been labeled manually, we think this
issue might have affected the results. Regarding the second problem, we can
state that the models trained with the datasets balanced with TS SMOTE
outperform the results of the models trained with the original dataset in all
the experiments, although it has very poor results for the Sensitivity and G
in the subject 2 scenario. Besides, it has to be considered that the number of
positive TSs in this dataset is quite low and outlier TSs in such small datasets
can dramatically affect the new synthetic TSs obtained with TS SMOTE. In
future studies we will address this issue.

However, the issue concerning how to merge related input features remains
unstudied.
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